Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review

M.S. Alam, M.A. Youssef, and M. Nehdi

Abstract: Shape memory alloys (SMAs) are special materials with a substantial potential for various civil engineering applications. The novelty of such materials lies in their ability to undergo large deformations and return to their undeformed shape through stress removal (superelasticity) or heating (shape-memory effect). In particular, SMAs have distinct thermomechanical properties, including superelasticity, shape-memory effect, and hysteretic damping. These properties could be effectively utilized to substantially enhance the safety of various structures. Although the high cost of SMAs is still limiting their use, research investigating their production and processing is expected to make it more cost-competitive. Thus, it is expected that SMAs will emerge as an essential material in the construction industry. This paper examines the fundamental characteristics of SMAs, the constitutive material models of SMAs, and the factors influencing the engineering properties of SMAs. Some of the potential applications of SMAs are discussed, including the reinforcement and repair of structural elements, prestress applications, and the development of kernel components for seismic devices such as dampers and isolators. The paper synthesizes existing information on the properties of SMAs, presents it in concise and useful tables, and explains different alternatives for the application of SMAs, which should motivate researchers and practicing engineers to extend the use of SMAs in novel and emerging applications.

Key words: shape memory alloy, superelasticity, shape-memory effect, construction, retrofitting.

1. Introduction

Civil infrastructure constitutes a substantial portion of the national wealth in most countries. Because of aging and decay, it often needs monitoring, evaluation, and repairing at regular time intervals. This has resulted in infrastructure management becoming an economic burden. It is argued that many problems related to infrastructure management could be eliminated if a structure is made smart and capable of detecting its own damage, repairing its condition, and adopting changes in its loading conditions. This thinking has recently given rise to smart materials and structures, which have the ability to undergo large deformation and return to a predetermined shape upon unloading or by heating. The dis-

tinct and unique properties of SMAs make them intelligent materials with the potential to be used in building smart structures that respond and adapt to changes in condition or environment (Hardwicke 2003). The SMAs have been used in a wide variety of applications in different fields and industries such as aviation, medical equipment, and implants. They have also been used as actuators, switches, valves, and clamping devices. The SMAs are gradually gaining recognition and finding new applications in medical sciences (Miller 2005) and in several engineering fields (Norton 1998; Jung 2006).

There are numerous applications of SMAs in civil engineering (Janke et al. 2005). Some of these applications, especially in the seismic field, have been discussed by DesRoches and Smith (2004), Wilson and Wesolowsky (2005), and Song et al. (2006). Wilson and Wesolowsky and DesRoches and Smith provided detailed description of experiments conducted by various researchers on the mechanical properties of SMAs but did not summarize the associated results. Wilson and Wesolowsky and Janke et al. (2005) provided data on the tensile properties of SMAs, but other mechanical properties of SMAs under compression, shear, and torsion were not included in their study; such properties are necessary for the design and analysis of structures. None of the aforementioned studies provided clear direction on using built-in SMA models existing in finite element (FE) packages so that practicing engineers can readily use such models to analyze structures using SMA materials.

The current paper presents, in a systematic manner, a summary of the basic characteristics of SMAs, some useful tables on their mechanical properties, and a critical review of the state-of-the-art of their possible seismic and nonseismic applications along with their future expected trends in civil engineering. This paper also provides a general description of the modelling aspects of SMAs in addition to useful information for practicing engineers on built-in SMA models available in some FE packages. Over the last two decades, a substantial amount of research has been done on the material science and possible uses of SMAs in structural applications. It is being realized that SMAs possess a substantial potential to replace or complement conventional materials while achieving great gains in performance and safety.

2. Fabrication of shape memory alloys

Several SMAs with various compositions have been developed. These include Ag–Cd, Au–Cd, Cu–Zn, Cu–Zn–Al, Cu–Al–Ni, Fe–Mn, Mn–Cu, Fe–Pd, Cu–Zn–Al–Mn–Zr, Cu–Al–Be, Ti–Ni–Cu, Ti–Ni–Hf, Ni–Ti–Fe, and Ni–Ti (Otsuka and Wayman 1999). SMAs are usually fabricated by melting alloys in a high-vacuum or inert-gas environment to avoid contamination, since the melted alloy may be reactive with oxygen. The alloys are then hot worked or cold worked to eliminate contamination, since the melted alloy may be reactive with oxygen. The alloys are then hot worked or cold worked to achieve great gains in performance and safety.

3. Transformation temperatures

Like many other alloys and metals, SMAs exhibit polymorphism, i.e., possess more than one crystal structure having the same chemical composition. The predominant crystal structure or phase in a polycrystalline metal depends on both stress and temperature and is controlled by both chemical composition and thermomechanical processing (Dolce and Cardone 2001). At a relatively low temperature, SMAs exist in the martensite phase. When heated, it undergoes a transformation to the austenite phase (crystalline change). In the stress-free state, SMAs are characterized by the following four distinct transformation temperatures (Fig. 1): martensite start (M_s), martensite finish (M_f), austenite start (A_s), and austenite finish (A_f). Typical values of transformation temperatures for several alloys in a stress-free state are presented in Table 1. An SMA exists in a fully martensite state when its temperature (T) is less than M_f and in a fully austenite state when T is greater than A_s. During the phase change from martensite to austenite and vice versa, both martensite and austenite phases coexist. The phase transformation of SMAs during heating and cooling is qualitatively shown in Fig. 1. When the material is heated to A_s, its phase starts to change gradually from martensite to austenite. At a temperature of A_f, this transformation is complete. Cooling the material will result in a phase change from 100% austenite at a temperature greater than M_f to 100% martensite when the temperature M_f is reached. If the temperature in the austenite phase increases above M_f ($T >> A_f$), the superelasticity is lost.

A small change in the relative proportion of the constitutive metals can have a marked effect on the transformation temperatures (Table 1). It has been observed that under the same fabrication process, a 1% shift in the nickel content results in a 100 °C change in the M_f or A_s point (Otsuka and Wayman 1999). Variation in the fabrication process of the alloys also significantly affects the transformation temperature, even for the same chemical composition, as shown in Table 1.

4. Mechanical properties of shape memory alloys

Each SMA considerably differs in its mechanical properties. Such properties vary over a wider range, not only due to variation in chemical composition, but also due to the atomic arrangement in the martensite and austenite phase of the SMA that depends on the thermomechanical processing and heat treatment. Even a slight change in the relative proportion of the constitutive metals within the same alloy may significantly affect its mechanical properties (Strnadel et al. 1995). Various SMAs in the form of wires and bars with different diameters have been tested by a number of researchers under tensile, compressive, torsional, and shearing forces. The various parameters defining the material properties are presented in Table 2 for the most widely used SMA (i.e., Ni–Ti) and in Table 3 for some other SMAs.

© 2007 NRC Canada
Fig. 1. Phase transformation and change in crystalline structure of shape memory alloys from martensite to austenite and vice versa as a function of temperature. A_t, austenite finish temperature; M_f, maximum temperature at which martensite occurs; M_s, martensite finish temperature; A_f, martensite start temperature; e, axial strain.

4.1. Tensile and compressive behaviour
A typical stress–strain curve of SMA (austenite or martensite) under tensile and compressive forces is presented in Fig. 2. The curve is composed of four linear branches that are connected by smooth curves. For simplicity, the linear branches are assumed to intersect as shown by the broken lines in Fig. 2. The material is tested under both tensile and compressive forces (Liu et al. 1998). The length to diameter ratio was reduced in the case of specimens tested under compression compared with those in tension to avoid buckling. The material behaves elastically at the start of the test, with a modulus of elasticity E_u until it reaches the yield stress, f_y. As it crosses f_y, there is a significant reduction in stiffness, where the modulus of elasticity, E_{p1}, reduces to about 10%–15% of E_u. Such stiffness is maintained up to a stress of f_{p1} and strain of e_{p1}. As soon as it passes e_{p1}, the specimen becomes stiffer and its modulus of elasticity E_{p2} reaches about 50%–60% of E_u. Another yield point, f_{p2}, occurs at a strain of e_{p2}, which is followed by a yield plateau with a modulus of elasticity E_u (3%–8% of E_u) until failure occurs by reaching the ultimate stress, f_u, at a strain of e_u. Typical values of characteristic axial strain (e), axial stress (f), and Young’s modulus (E_u) are shown in Tables 2 and 3.

4.2. Torsion and shear behaviour
The typical stress–strain curve of SMA under torsion and shear follows a pattern similar to that of the stress–strain curve under tension. The characteristic parameters of shear stress (τ), shear strain (γ), and shear modulus (G) are denoted by τ_{y}, γ_{p1}, τ_{p2}, γ_{p2}, γ_{u}, G_{y}, G_{p1}, G_{p2}, and G_{u}.

5. Unique properties of shape memory alloys
The shape-memory effect (SME), superelasticity-pseudoelasticity (PE), and performance under cyclic loading make SMAs distinctive compared with other metals and alloys.

5.1. Shape-memory effect
The stress-induced behaviour of SMAs depends on temperature. In the martensite state ($T \leq A_f$), there will remain some residual strain (e) upon unloading. This is mainly due to the reorientation of twin variants of atoms as shown in Fig. 1. This residual strain will theoretically completely disappear if the SMA is heated above A_f, as shown by the curve in the strain–temperature plane of Fig. 3. Upon heating, the atoms reassemble themselves and the material regains its original shape, a phenomenon commonly known as the shape-memory effect.

5.2. Superelasticity
In the austenite state ($T > A_t$) when SMAs are loaded and unloaded, six distinctive characteristics can be recognized in the stress–strain diagram (curve 2 of Fig. 3): (i) elastic response of austenite at low strains (<1%) as denoted by BC, (ii) stress-induced transformation from austenite to martensite with a long and constant stress plateau at intermediate and large strains (1%–6%) as indicated by CD, (iii) elastic response in the stress-induced martensite state at large strains (>8%) represented by DE, (iv) elastic recovery of strain upon stress removal as shown by EF, (v) instinctive recovery of strain at almost a constant stress path because of the reverse transformation to austenite due to the instability of martensite at $T > A_t$ as depicted by FG, and (vi) elastic recovery in the austenite phase as indicated by GB (Wilson and Wesolowsky 2005). This exceptional property of SMAs with the ability of recovering substantial inelastic deformation upon unloading yields a characteristic hysteresis loop, which is known as superelasticity-pseudoelasticity (PE). If the temperature in the austenite phase exceeds the maximum temperature at which martensite occurs (M_f), then PE of SMA is completely lost and the SMA behaves like an elastic–plastic material as shown in curve 3 of Fig. 3.

5.3. Behaviour under repeated–cyclic loading
The unique properties of SMAs under cyclic loading have made it attractive for various engineering applications. Several researchers have tested the cyclic properties of SMAs under tension, compression, shear, and torsion. The typical stress–strain diagrams of austenite SMA under cyclic axial, shear, and torsion forces are presented in Fig. 4, and those for martensite SMA under cyclic axial and torsion forces are presented in Fig. 5.

When an SMA specimen is subjected to a cycle of deformation within its superelastic strain range, it dissipates a certain amount of energy without permanent deformation. This results from the phase transformation from austenite to martensite during loading and the reverse transformation during unloading, ensuring a net release of energy. When an SMA is loaded in the martensite phase, it yields at a nearly constant stress after initial elastic deformation and displays strain hardening at larger strains. When unloaded, there remains some residual strain at zero stress. This martensitic composition of SMAs generates a full hysteresis loop around the origin (Fig. 5). Thus, martensitic SMA dissipates a much higher amount of energy compared with that of austenite SMA because of its larger hysteresis loop. In the martensite phase under tension–compression cycles, the maximum stress attained in compression has been found to be approximately twice that in tension (Fig. 5). This may be due to the difference in the cyclic hardening and softening process that takes place in tension–compression at maximum and zero strain, respectively (Liu et al. 1999). However, it needs to be mentioned that martensite is not self-balanced. Although superelastic SMA dissipates less energy than martensitic SMA, its advantage is that it can still dissipate a considerable amount of
energy under repeated load cycles with negligible residual strain.

It can be observed that under shear stress, superelastic SMA has some residual strain after unloading, which may be due to the presence of some partially stabilized martensite (Orgeas et al. 1997). The mechanical behaviour of SMAs under torsion depends slightly on the loading frequency in the superelastic range but is independent in the case of the martensite phase. It has been found that SMAs exhibit highly stable and repeatable hysteresis under torsion in austenite and martensite phases (Dolce and Cardone 2001).

Generally, the loading plateau and the hysteretic loop gradually decrease and the residual strain increases for successive loading cycles of a pseudoelastic SMA due to localized slip, which facilitates the formation of stress-induced martensite. However, this behaviour has been proven to decrease and stabilize at a large number of cycles (Miyazaki et al. 1986). The strain rate also has an important effect on the mechanical properties of SMAs. An increased strain rate causes an increase in stresses for both cases of loading and unloading with a narrow resultant hysteretic loop, thus resulting in an overall decrease in the energy-dissipation capacity. This is mainly due to self-heating of the specimen during cycling, requiring a larger stress to induce a martensitic state.

6. Constitutive material modelling of shape memory alloys

Over the last decade, the use of SMAs has emerged in a variety of fields such as medical sciences and aerospace, mechanical, and civil engineering. Therefore, the development of proper constitutive models has become an important prerequisite in modelling and designing SMA devices before reaching the prototype stage in the design process. The peculiar thermomechanical behaviour of SMAs with SME and PE has made constitutive modelling a three-dimensional complex problem, since it is difficult to choose suitable tensorial variables to express the behaviour of SMAs under multiaxial responses. SMAs are usually modelled following either a phenomenological or thermodynamics approach.

6.1. Phenomenological modelling

Since most civil engineering applications of SMAs are related to the use of bars and wires, one-dimensional phenomenological models (PMs) are often considered suitable. In phenomenological models, the parameters shown in Figs. 1 and 2 are defined experimentally. Several researchers have proposed uniaxial phenomenological models (Tanaka and Nagaki 1982; Liang and Rogers 1990; and others).

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Source</th>
<th>Composition (%)</th>
<th>Fabrication process</th>
<th>M_1 (K)</th>
<th>M_2 (K)</th>
<th>A_1 (K)</th>
<th>A_2 (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni–Ti</td>
<td>Manach and Favier 1997</td>
<td>50.5, 49.5</td>
<td>Hot-rolled and subsequently cold-rolled with intermediate annealing</td>
<td>277.0</td>
<td>306.0</td>
<td>317.0</td>
<td>335.0</td>
</tr>
<tr>
<td>Ni–Ti</td>
<td>Delgadillo-Holtfort et al. 2004</td>
<td>50.8, 49.2</td>
<td>Annealed followed by water quenching</td>
<td>227.0</td>
<td>252.0</td>
<td>270.0</td>
<td>284.0</td>
</tr>
<tr>
<td>Ni–Ti</td>
<td>Hesse et al. 2004</td>
<td>55.7, 44.3</td>
<td>Unannealed</td>
<td>204.0±2.0</td>
<td>287.0±1.0</td>
<td>264.0±2.0</td>
<td>295.0±2.0</td>
</tr>
<tr>
<td>Ni–Ti</td>
<td>Strnadel et al. 1995</td>
<td>50.9, 49.1</td>
<td>Vacuum annealed followed by water quenching</td>
<td>157.4</td>
<td>242.5</td>
<td>275.1</td>
<td>317.8</td>
</tr>
<tr>
<td>Ni–Ti</td>
<td>—</td>
<td>50.5, 49.5</td>
<td>Vacuum annealed followed by water quenching</td>
<td>195.4</td>
<td>254.7</td>
<td>282.2</td>
<td>326.2</td>
</tr>
<tr>
<td>Ni–Ti–Cu</td>
<td>Strnadel et al. 1995</td>
<td>40.0, 50.0, 10.0</td>
<td>Vacuum annealed followed by water quenching</td>
<td>294.1</td>
<td>314.6</td>
<td>325.9</td>
<td>339.8</td>
</tr>
<tr>
<td>Cu–Zn–Al</td>
<td>Vivet et al. 2001</td>
<td>25.6, 4.2, 70.2</td>
<td>Annealed followed by ageing in a quenching bath</td>
<td>288.5</td>
<td>292.3</td>
<td>293.2</td>
<td>298.3</td>
</tr>
<tr>
<td>Cu–Al–Ni</td>
<td>Recarte et al. 2004</td>
<td>82.0, 14.0, 4.0</td>
<td>Annealed followed by water quenching</td>
<td>252.0</td>
<td>246.0</td>
<td>274.0</td>
<td>285.0</td>
</tr>
<tr>
<td>Cu–Al–Be</td>
<td>Rejzner et al. 2002</td>
<td>11.6, 0.6, 87.8</td>
<td>—</td>
<td>157.0</td>
<td>179.0</td>
<td>169.0</td>
<td>195.0</td>
</tr>
<tr>
<td>Ni–Ti–Fe</td>
<td>Special Metals Corporation 2006</td>
<td>53.5, 45.0, 1.5</td>
<td>Cold-drawn</td>
<td>—</td>
<td>—</td>
<td>263.0±5.0</td>
<td>283.0±5.0</td>
</tr>
<tr>
<td>Ti–Ni–Hf</td>
<td>Wang et al. 1999</td>
<td>36, 49, 15</td>
<td>Hot-rolled</td>
<td>421.0</td>
<td>452.0</td>
<td>489.0</td>
<td>504.0</td>
</tr>
</tbody>
</table>

© 2007 NRC Canada
10.0, where SMA has been subjected to multiple stress cycles at a constant temperature.

6.2. Thermodynamics-based modelling

Thermodynamics-based models (TMs) are built on the laws of thermodynamics and energy considerations. A number of TMs have been developed illustrating one or more aspects of SMAs. Patoor et al. (1994), Goo and Lexcellent (1997), Huang and Brinson (1998), and others adopted micro-mechanics approaches and pursued closely crystallographic phenomena within the material using thermodynamics laws. TMs are much more complicated and computationally demanding than PMs because they present a highly sensible technique to derive precise three-dimensional constitutive laws.
However, PMs seem to be more adequate for civil engineering applications involving SMA wires and bars because they can be easily incorporated in FE programs.

7. Applications of shape memory alloys

The unique characteristics of SMAs have led to several applications in civil engineering. In this section, an attempt has been made to examine these applications in both newly built structures and retrofitted structures.

7.1. Shape memory alloys in new structures

Substantial research has been conducted on the use of SMAs in the construction of new structures in the form of reinforcement, bolted connections, restrainers, bracings, and prestressing strands.

7.1.1. Reinforcement in concrete structures

Bridges and buildings in seismic regions are susceptible to severe damage due to excessive lateral displacements. Earthquake-resistant structures should be designed to behave elastically under moderate earthquakes. Under strong ground motions, it is not economically feasible to build structures that will perform elastically. In conventional seismic design, steel is expected to yield to dissipate energy while undergoing permanent deformation. Conversely, if SMA is used as reinforcement, it will yield when subjected to high seismic loads but will not retain significant permanent deformations (Wang 2004).

The seismic performance of reinforced concrete (RC) columns with superelastic SMA rebar in the plastic hinge area was investigated by Wang (2004). Two quarter-scale spirally tied RC circular columns with SMA (Ni–Ti) in the plastic hinge area and steel rebar in other areas were designed, constructed, and tested using a shake table. It was observed that SMA–RC columns were superior to conventional steel–RC columns in limiting relative column top displacement and residual displacements and withstanding larger earthquake amplitudes. After the test, the damaged SMA–RC column specimen was repaired with engineering cementitious composites and retested using the same approach as that of the initial test. The shake-table data showed that the repaired SMA–RC column performed better than the original intact specimen in terms of force–displacement capacity and ductility.

© 2007 NRC Canada
7.1.2. Bolted joints

Beam–column and column–foundation joints are often the weakest link of a structure during earthquake events. Superelastic SMA materials can be effectively employed in such joints to reduce their vulnerability by dissipating greater energy through large plastic deformation and then recovering it.

Ocel et al. (2004) investigated the effectiveness of partially restrained steel beam–column connections using SMA elements. The connection consisted of four large-diameter Ni–Ti tendons in the martensite phase connecting the beam flange to the column flange serving as the primary moment transfer mechanism. Two full-scale connections were tested. The connections exhibited a high level of energy dissipation, large ductility capacity, and no strength degradation after being subjected to load cycles up to 4% drift. After the initial testing series, the tendons were heated to recover the residual beam tip displacements. After initiating SME within the tendons, the connections were retested, displaying repeatable and stable hysteresis behaviour. An additional test was performed under dynamic loading and, except for a decrease in energy dissipation capacity, showed a behaviour similar to that observed in quasistatic tests. This proof-of-concept indicates a potential for the use of SMAs in seismic design and retrofit of structures.

When a fastener is tightened, it is subjected to tension commonly known as preload. The PE of SMAs can also be utilized to regain preload drop in bolted joints, and thus provide the necessary clamping force to keep joint members together. Hesse et al. (2004) used martensite SMA (Ni–Ti) rings to repair loose bolted joints. The axial force in the SMA ring was continuously monitored, and if decreased the ring was heated above A_f to increase its dimension axially, thus providing a means of tightening the joint. The advantage of using an SMA ring lies in the fact that, unlike other metals, its dimension will not decrease with the temperature drop as long as its
temperature remains above \(M_s \), as shown in Fig. 1. Thus, SMA rings can help in the self-healing of bolted joints.

7.1.3. Bracings

Salichs et al. (2001) conducted a numerical study with a one-storey prototype-building model strengthened with superelastic SMA (Ni–Ti) diagonal bracing wires subjected to a harmonic base excitation. The results showed that additional damping provided by superelastic SMA hysteresis reduced the peak displacement and prevented damage compared with that of steel bracing with similar stiffness. Due to a lower level of damage, this should also make the repair of frames easier, even after a severe earthquake.

7.1.4. Prestressing

Prestressing concrete and masonry structures with SMA strands–wires has been found to be a viable alternative. Both pretensioning and post-tensioning can be done using SMAs. The benefits of employing SMAs in prestressing include \(i \) active control on the amount of prestressing with increased additional load-carrying capacity; \(ii \) no involvement of jacking or strand-cutting; and \(iii \) no elastic shortening, friction, and anchorage losses over time.

7.1.4.1. Pretensioning

Pretensioned SMA strands–wires in the martensite state are embedded in concrete, then electrically heated to transform from the martensite phase to the austenite phase, thus undergoing large shrinkage strains; if constrained, the SMA strands–wires generate a significant prestressing force in concrete. The application of conventional prestressing by pretensioning wires requires jacking and release of pre-stressing strands, which may cause cracking at the end of girders during strand cutting (Kannel et al. 1997). If SMAs are used for prestressing, jacking or strand-cutting are not required. For instance, Maji and Negret (1998) used Ni–Ti strands for prestressing concrete beams by utilizing the SME of SMAs. The SMA strands–wires developed good bonding strength to concrete by mechanical interlocking where the strands transferred stresses to the concrete beam even beyond their yield stress. The test indicated a potential for creating smart structures where the amount of prestressing can be increased or decreased as required. Such structures could, for instance, actively accommodate additional loading or remedy pre-stress losses over time.

7.1.4.2. Post-tensioning

Pre-stretched SMA strands–tendons in the martensite phase are passed through post-tensioning ducts after placement of concrete, and heating can conveniently induce post-tensioning. Post-tensioning requires anchoring of SMA bars, but does not require jacking and strand-cutting, which mitigates the possibility of friction and anchorage-losses. Prestressing losses because of elastic shortening, creep, and shrinkage are negligible and can be recovered by heating SMA bars when required.

El-Tawil and Ortega-Rosales (2004) used SMA tendons to permanently press prestress concrete. Two types of SMAs were investigated, namely Ni–Ti and Ni–Ti–Nb. The former SMA was found unsuitable for permanent prestressing applications because all recovery stresses were lost due to a temperature drop after the heat source was removed. It was assumed that the material might have been overheated and entered into its annealing temperature. The latter alloy proved to be a better solution for permanent prestress applications with a slight drop in the recovery stress. However, its recovery stress was rather low (156–244 MPa) compared with that of the Ni–Ti alloy (275–380 MPa). The constrained recovery stress was found to increase mildly with an increase in the pre-strain level. Ni–Ti–Nb tendons were prestrained and placed in mortar beams. After beam curing, the tendons were heat-triggered to induce post-tensioning. Four-point bending tests on beams demonstrated that significant prestressing was achieved.

It is to be noted that for permanent prestressing, whether it is pretensioning or post-tensioning, \(A_t \) should be above the ambient temperature \((T_a) \) to prevent accidental activation of SMAs during construction. Also, the \(M_s \) should be below the lowest operating temperature for the prestressing to be active during operation.

7.1.5. Restrainers

One of the major problems of bridges during earthquakes is their unseating because of excessive relative hinge opening and displacement (Schiff 1998). Limitations of existing unseating-prevention devices include small elastic strain range, limited ductility, and no recentring capability (ability to bring the member back to its original position even after inelastic deformation). These limitations can be overcome by introducing SMA restrainers. For instance, DesRoches and Delemont (2002) evaluated the efficacy of SMA restrainer bars through an analytical study of a multispan simply supported bridge subjected to a set of ground motion records. The performance of SMA restrainers was compared with that of conventional steel restrainers. The results demonstrated that SMA restrainers were capable of reducing relative hinge displacements much more effectively than conventional restrainers.

7.2. Shape memory alloys in retrofitting of existing structures

Inadequate design, faulty construction, impact and dynamic loading, and time-dependent deformation are among the various reasons for which a structure or one of its elements can become deficient to withstand the applied loads and risk failure. Steel and fibre-reinforced polymer (FRP) are commonly used for retrofitting deficient structures. The SMAs are another potential candidate for such applications, having several advantages over steel and FRP. If SMAs are used as a retrofitting material instead of steel and FRP, structural forces can be reapplied in case of elastic deformation, lost torque, or slippage. Another important property of superelastic SMA materials is its recentring capability, which may be utilized in the form of bracings and dampers for retrofitting structures in earthquake-prone zones. Moreover, SMAs are highly resistant to corrosion compared to steel. In the case of FRP, it is brittle and vulnerable to fire, whereas SMAs are ductile with relatively higher resistance to fire, and its strength increases as the temperature increases up to a certain limit.

7.2.1. Bracings

A shaking table test program was carried out by Cardone et al. (2004) to evaluate the effectiveness of passive control
bracing systems for the seismic retrofitting of RC frames designed for gravity loads. The hysteretic dissipating capacity of steel and the superelastic property of SMA-based bracing devices were used for retrofitting. A four-storey (305 cm high), three-dimensional, quarter-scale RC frame model was used with two longitudinal bays (231 cm long) and one transverse bay (133 cm wide). The SMA brace was made of superelastic SMA wires fitted inside two concentric steel tubes tending to move relative to one another and producing double-flag-shaped hysteresis loops. The test variables considered in the shake-table tests were a bare frame model, a steel-braced frame model, an SMA-braced frame model, unidirectional motion, bidirectional motion, and centred and eccentric masses. For the retrofitted SMA-based braced frame, the natural frequency was found to be distinctly higher than that measured for the steel-based braced frame despite the use of larger steel sections. This was mainly due to the strong effect on the initial stiffness of steel braces by the use of larger steel sections. This was mainly due to the use of larger steel sections. This was mainly due to the use of larger steel sections.

7.3. Dampers and isolators

Dampers are passive protection devices that are very effective in anti-seismic action for new and retrofitted structures. Even though various types of dampers have been developed utilizing various technologies, they have numerous limitations related to ageing and durability (e.g., rubber-based dampers), maintenance (e.g., viscous fluid dampers), reliability in the long run (e.g., friction dampers), temperature-dependent mechanical performance (e.g., rubber-based dampers, viscoelastic dampers), and geometry restoration for most dampers after a strong earthquake (Dolce et al. 2000). The SMA materials have the potential to overcome many of these limitations when applied in such devices.

Clark et al. (1995) conducted experimental and analytical research on energy-dissipation devices using SMAs. The basic model of the device was composed of 0.508 mm thick superelastic nitinol wire wrapped around two cylindrical support posts. There were 210 loops of wire in the preliminary device design. The device was initially prestressed at 2.75% strain and tested under in-plane cyclic loading, which showed good hysteresis results with a little reduction in yield stress. The function of this device was analytically studied by fitting it in a six-storey, two-bay by two-bay steel frame where it achieved good performance in reducing the displacement and acceleration responses by an order of one half to one third of the original structure under earthquake excitation.

Isolation devices are a special kind of damper that introduces discontinuity between a superstructure and its substructure, allowing relative horizontal displacements. They act as a filter through which the seismic energy transferred from the substructure to the superstructure is greatly reduced. The main aspect of an ideal isolator is to have a large energy-dissipation capacity. Considering their full recentring and good energy-dissipation capacity, SMAs seem to be very promising for use in such vibration-isolation devices.

Wilde et al. (2000) proposed an isolation system for an elevated highway bridge which consisted of a simple SMA bar combined with a laminated rubber bearing. Two isolation systems, namely a proposed smart isolator (SMI) and a conventional laminated rubber bearing with a lead core and a displacement restrainer (NZ), were considered and analyzed for north–south ground motion components of the 1995 Kobe earthquake and a sinusoidal excitation. For the smallest excitation (0.2g), a stiff connection was obtained between the pier and the deck. For a medium excitation (0.4g), an increase in the damping capacity was observed due to the stress-induced martensite transformation of SMAs. For the strongest excitation (0.6g), the SMA bars provided hysteretic damping and acted as a displacement-control device due to hardening of the alloy after complete phase transformation. It was found that in each excitation the maximum relative displacement between the pier and superstructure was lower for the SMI system than for the NZ system.
8. Constraints of using shape memory alloys

8.1. Cost of shape memory alloys

Although there is a substantial potential of utilizing SMAs in civil engineering structures, the cost of the material is a primary restraining factor to a larger implementation of SMA-based elements in structural applications. Due to the size of civil engineering structures, the associated forces are also large and require a substantial amount of materials, which is another hurdle for the use of the still costly SMAs in civil engineering applications. A substantial portion of the cost of Ni–Ti is intrinsically related to the difficulty of processing high-strength Ni–Ti materials into particular shaped forms (Frick et al. 2004). Therefore, custom-made size and machining have a considerable effect on the cost of SMAs, which may increase the price by two to three times. However, there has been a significant reduction in the price of Ni–Ti over the last 10 years, from more than US$1000/kg to below US$150/kg at present. The price is still considerably higher than that of other construction materials. The development of low-cost SMAs is essential for initiating large-scale applications. Janke et al. (2005) presented Fe–Mn–Si–X alloys as a potentially low-cost SMA. Low-cost SMA (e.g., Fe–Mn–Si–Cr) has been successfully implemented in bridge rehabilitation by Soroushian et al. (2001). Janke et al. compared the product price of Ni–Ti with that of Fe–Mn–Si–Cr and found that the cost of Fe-based systems could only be a small fraction (1/8 to 1/12) compared with that of Ni–Ti systems.

The feasibility of using SMA materials and devices in full-scale construction projects has been studied by Bruno and Valente (2002). They considered various costs in their study, including direct (structural, nonstructural) and indirect (injuries and deaths) in the construction phase and also when induced by an earthquake. The cost of SMA-based dampers, isolation devices, and bracings turned out to be of the same order as that of conventional steel devices. SMA devices have been found to be much preferable in the sense that they do not require additional costs such as those for maintenance or replacement. The efficacy of these devices is unique in both reducing economic losses and minimizing human risk associated with natural disaster events.

8.2. Other issues

Both austenite and martensite SMAs have a good potential for use in various civil engineering applications. When using superelastic SMA material, A_p always needs to be less than the minimum T_a to which it is exposed. If martensite SMA is used, M_s should be set such that it is always greater than the maximum T_a to which it will be exposed. Again, designing civil engineering structures requires proper knowledge of the mechanical properties of the material to be used. The mechanical properties of SMAs largely depend on the heat-treatment temperature, where a slight variation can cause significant changes in properties. To implement a wider use of SMAs in the construction industry, manufacturers are required to produce SMAs in mass scale with proper control of its properties and transformation temperatures.

Machining large-diameter bars of Ni–Ti using conventional equipment and techniques is extremely difficult due to its hardness. Although there are various ways of welding and soldering Ni–Ti, e.g., using e-beam, laser, resistance, and friction welding and brazing with Ag-based filler metals, welding Ni–Ti to steel is much more problematic because of the brittle connection around the weld zone (Hall 2003). Weld deposits with Ni-filler metal have exhibited sufficient tensile strength, allowing superelastic deformation of nitinol (Hall 2003). Threading large-diameter bars reduces the strength of nitinol due to its sensitivity to notches. Although Cu-based SMAs like Cu–Zn–Al and Cu–Al–Ni are less costly, they display poor ductility. Fe–Mn–Si-based low-cost alloys have been found to exhibit good mechanical properties with a wide transformation hysteresis, good machinability and weldability, and good workability compared with that of nitinol. Fe-based SMAs may also have good bond strength compared with that of Ni–Ti when used as reinforcing bars in RC structures. The problems related to these alloys include poor shape recovery and lower shape recovery stress compared with Ni–Ti-based SMAs. A special thermomechanical treatment called “training” must be done to improve its SME. This training consists of several cycles of deformation by stress-induced martensitic transformation and subsequent reversion to austenite. This in turn will make the manufacturing process complex and increase the production cost. Improvement of SME of these alloys without training has been made possible, for instance, by Kajiwara and his coworkers (Baruj et al. 2002; Dong et al. 2004).

9. Summary and concluding remarks

This paper presents the distinctive properties and several applications of shape memory alloys (SMAs) in civil engineering structures. The SMAs can be formed into various shapes, e.g., bars, wires, plates, and rings, and thus have the flexibility to serve various functions. The unique properties of SMAs make them an ideal contender for use as kernel components in seismic protection devices. A number of experimental and analytical studies of SMA devices (dampers and base isolators) proved them to be effective in improving the response of buildings and bridges to earthquake loading. In particular, the recent capability of SMAs can be very efficient in reducing the cost of repairing and retrofitting of various structures after severe earthquakes. SMAs have the potential to be used as reinforcement at critical regions of reinforced concrete (RC) structures along with conventional steel, where the SMA is expected to yield under strains caused by seismic loads but potentially recover deformations at the end of the earthquake. Another prospective use of SMAs is in prestressing, which can help a structure to actively accommodate additional loading or remedy prestress losses over time. Post-tensioning with SMA wires and tendons also proved to be a better option over conventional steel tendons in retrofitting works. The self-repairing capabilities of superelastic SMAs may be utilized to regain the preload drop in bolted joints or other types of fasteners, and thus necessary clamping forces can be provided to keep the joint members together. Although there has been substantial research work on individual components of structures utiliz-
ing SMAs, the integration of several components in a single smart structure is yet to be investigated.

Applications of SMAs are numerous, and new ideas are emerging for using it in various fields and applications. Extensive research work still needs to be done. New SMAs need to be developed to suit the production and service temperature for industrial and building applications. The high cost of SMAs is a major limiting factor for its wider use in the construction industry. Hence, the cost of the alloy needs to be considerably lowered. Fe-based SMA alloys may prove to be less costly and well suited for applications in cement-based mortar, concrete, and steel. If a lower price can be ensured and more flexibility in manufacturing SMAs in various shapes and sizes is guaranteed, then SMAs have a great possibility of becoming an essential construction material in the near future. Their capability to allow the development of smart structures with active control of strength and stiffness and ability of self-healing and self-repairing opens the door for exciting opportunities, making them the construction material of the future.

References

Cardone, D., Dolce, M., Ponzo, F.C., and Coelho, E. 2004. Experi-

© 2007 NRC Canada

